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The paper is devoted to reduction of fully nonlinear parabolic problems of high order
to operator equations involving operator satisfying (S;) condition. The topological
methods could be used o investigate solvability of such operator equations. The theo-
rems of uniqueness and local existence for solution of boundary value problem, proved
by topological approach are formulated in the paper. The results formulated are gener-
alizations of analogous facts proved in {1].

Let n» > 2, m, {m;}]., be positive integers, 0 < m; < 2m —1, j = I,m and
T >0, p > 2 be real numbers. For bounded domain I ¢ R"® with boundary 90 we
denote Qp := QO x (0,7}, Sy := 00 x(0,T) and consider the following boundary value
problem:

%;i — F(m,t,u,Dzu,...Dzmu) = flz,t), {(z,t) € Qr, (1)
Gj(zs t} Uyors D™ ‘IL) = gj(z?t)3 (z,t) € ST‘J j L ma (2)
w e WHmDO(Qr). | (3)

Functions F, G; in problem (1) ~ (3} are supposed to be fully non-linear. Notifica-
tion D*u means all possible partial derivatives D%u of order k by variables z € 0
where a is multiindice.

For positive integer k anysotropic space W, {2mk k)(QT) is the Banach space of all
real functions u(z,f) on Q7 that have generalzze& cierwa.twcs (2 ) D“u € L,(Qr),
where |a] + 2ms < 2mk, with the norm -
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For the boundary 8§} we assume the inclusion
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is satisfied. In other words, it is possnbie to choose a finite collection {U,;]"mz of open
sets and d > G with properties

S;) ot U Uss
il . .
S;) for each i ==1...7 there exists £9 € 00N U; such that in the local Cartesian

coordinate system {y} with origin at £ the set GQ2(U; is given by the equation

Yo =hi(y')s ¥ = (91,32 - .. Yuo1) € D(d) := (—d,d)"";

Ss) foreach i=1...1 h; € C*™{D(d))}.
Let us denote by ¢:(y) the transformation from the local coordinate system {y}
to coordinate system {«} where i € 1...7. Then we can introduce the notifications

u(i)(y':t) = u{¢i(y', hily)) 1), (¥'s¢) € Dp(d) = D(d) x (0,T), i = 17.

For non-integer & > 0 such that 2mk is not integer too we deéfine the space
W (2mk, k)(S } as the space of all real functions u{z,t} on Sr such that for every
i =1...I the functions u{"(y’,t) have generalized derivatives (&) D3u¥ € L,(S7),
e} +2ms < 2mk { where a = {ay,a,...a,—1) and Dy, means differentiation by vari-
ables y') and finite norm

{Znak 5, (i) (2mb,k)
P,S'r Z Jlu™ ”P Dy {d)?
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| Tdt/ l(&) Dgvly',t) - (m) DZw(z' t)'
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;!vllp,gﬂd)_‘_( )
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lel+2ms=(2mklo  pig) pla)
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o B o [T )
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It’s not difficult i;o"show that norms of the space W,E""’""")(Sg«) corresponding to dif-
ferent covers {U;} are actually equivalent.

We define W(zmk k)’a(Qq-) as the subspace of szmk k)’a(Q ) consisting of all func-
tions u, which sat;zsfy zero initial conditions

. 8 | 1
hx;:é-ggu(z,t)m{],' z € 05{5k_~—.

o P

The spaces Wézmk’k)’o(sr) are defined analogously. . ..
We'll assume that numbers n,m, {m;}7..,,p satisfy inequalities

2m +n 2m + 1 R —
P> g P#m}s ji=1m (5)

157



and the following inclusions for functions on the right side of the problem hold

4m-m;—1,2—54-=1-),0 T
f e WEmIYQp), g e W T TR ImR) (o) = Tm. (6)

Let us define M(k) to be an amount of all different mpltiindices a such that |a| <k.
We’ll use the following notations: :

Fo(z,t,8) == %F(m,t,{), (={la €R:|a|] <2m}c RM(em)

a - e
Giple,t,0) = g-Gilest,), C={Gp € R:BI<m} € RY™), j=Tm
We assume that functions on the left side of the problem (1) — (3) satisfy the following
conditions: :
F1) Function F(z,t,£) has all continuous partial derivatives by £, up to the order
2m +1, F(-,-,0) =0; e
F2) There exists such v € C(R*,R") that for each £ € RM(Z™) n € R™ the
inequality
(=1)™* Y Falz,t,&)n% 2 v(|€D ™

|l=2m

holds;
F3) Operators

Fo(u) := Fal-,,u, D*u,... D*™u) : WE™D0(Q1) — wizm(Qr)

are bounded and continuous; :

G1) For each j = 1...m function Gj(z,t,() has all continuous partial derivatives
by (s up to the order 4m —m; +1, G;(-,-,0) =0;

Let z € 89, t € (0,T), £ € RMC™ | (= {¢{ :|a] < m;}, 7 be the unit vector in
the direction of outward normal to dQ at point z and & belong to tangent plane to
0Q at point z. For complex 7 and real g we define

L(z,t,6,6 +m0,9) = ¢ — (=1)™ > Fa(z,t,£)(6 + )%,

|al=2m

Bj(z:t:'c:& + T’?) = E Gjﬁ(31t1 C){J +1”q)ﬁ: J

|Bl=m;

1,m.

If ¢ > —5|8P™, 0 <& < v(|¢]) and |g| +|6] > 0, then L(=,t,,6 +77,q) has m
roots ;7 with positive real parts as polinimial of 7 (the other roots are with negative
real parts) [3]. Let ' '

m

L*(z,t,€,6,m,) = [[(r - 7).

=1

We assume that the following condition is satisfied (Lopétinsky condition):
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G2) For each (z,t) € Sy, £ € RMZ™ and §, from the tangent plane to 80 at
 point z polynomials B; of r are linear mdependcnt by the module of polynomial L"’
of r provided that znequa.lztics q = —vjdf™, 0 < & < v(j¢]) hold;

G3) Operators

| | - (4m—3,2— 520 :
Gjﬂ{ﬂ) 3o Gjﬁ(', "u’ .. vD "u) H Wp . . (ST) e o .
A - ,2-~m‘--— )
Wé Tk 5w (S7)

are bounded and continuous; : :
We also assume that compatibﬁlty conditions for prebiem (1} ~ (3) are satisfied. It -
means that
C) Foreach j=1,...m g;(2,0) =0 and the equality

. 0
> Gisl2:0,0D" f(2,0) = lim = g5(z,),
1Bi<m,

is fulfilled for such j that p > imtl

2arpeerng )
Now we start with reduction of the boundary value problem (1) — (3} to operator
equation. To this end we define auxiliary operators

Liu)g := Z Fo(z,t,u,D'u,...D*™u)D%, (z,t) € Qr,

lal<2m

Bj(u)‘té = E Gjﬁ(zat:“s .o -ij“)Dﬂ‘ﬁ} (3st)'€ Sr, i= m
_ 1Bl<m;
for {u,¢4} C Wi*™2%(Qr).
Let 9, (s} := s|s}?"? and p; = 4m — m; — 1. Operator 4 : W,E“m'z}'e(QT) —p
[W,ﬁ*’“*”*"(@ﬂ] corresponding to problem (1) — (3) will be defined by the following
(_equa.iitics: :

Au ::Ag_(u, % — F(z,t,u,D*u,... D*™u) ~ f(z,t)) -+
n ' o (7)
+ 3 Ap, (u,Gj(2,t,5, ... D™ u) - gj(=,8))
Fu=l
where . : '
< Ag(iy), ¢ > [ [(3) o)
iai+3ms<2m Qr . | (8)
. (-gt-) D= [%?‘ - L(u)ﬂz,t)] d‘“&a.
and for fixed j € 1,...m | | |
< Ap;(u,w),4 >:= Z<A(k)(uw)¢>, o - (9)

k=1
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A(l)uw s >i= Z Z /;J(d}
T

1 |B]+2ms<pu(j) (10) |

w[(2) D‘%w“"(y',t)] (5) Dozl v

<45) [ oS fou
(u,w), ¢ >:= Z Z t i

=1 |B|+2ms=p(j)

of(@) ot @,

{(2) s - (5) phimwe o}

dy'dz’
’ lyf _ z!|n+p—2 !

w(3)

A(S)ﬂw¢>_‘z Z Z / dy'-

i=1l=2m—m; |B|+2ms=I D(d)

[ Lol v (3) o]
: { (36?)3 DL[B;j(u)g]"” (¢',1)-

2\’ i dtdr
—(g) o 1B (w)e)™ (', )}m,

where p(l) =1+ (2 - me 2;7:)?; l=2m—mj,pu(j).

2m

The following theorem tells us about properties of operator, defined by formulas (7)-
(12).
THEOREM 1. Assume that conditions (4)—(6), F1)- F3), G1)- G3) and C) are satisfied.
Then

(1) Operator A, defined by (7)-(12), acts from the space W(4m’2)’0(QT) to adjoint
one;
(2) For p>2 operator A is bounded, continuous and satisfies (S;) condition on

(‘1ms2)s (Q ) .
According to [2], the definition of (S4) condition is the following:

(S+) coNDITION. Let X be reflexive Banach space and H : X — X*. We say -
that H satisfies (S.,.) condition on X , if for each sequence {ux}{2, C X, from the

up = ug € X, lImiyeo < Hup,ur —up >< 0 it follows that up — uo .

(12)

We can investigate the operator equation _ '

Au=0, ue W ™D0Qr) (13)

together with problem (1) - (3). Next theorem tells us about the connection between
problem (1) - (3) and equation (13).
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THEOREM 2. Assume that conditions of.‘theorem 1 are satisfied. Then function u is
the solutuion of the problem (1)—(3) if and only if it is the solution of the equation (13).

Now we can investigate equation (13) instead of the problem (1) — (3). On this way
we can use topological methods, developed in [1]. As a result, the following uniqueness
and local existence theorems for the problem (1) ~ (3) are proved:

THEOREM 3. Assume that conditions of theorem 1 are satisfied. Then the prbblem
(1)-(3) can have at most one solution.

THEOREM 4. Assume that conditions of theorem 1 are satisfied and p > 2. Then for
every K > 0 there ezists 7 > 0 dependent only on K,Q, F,G; such that there ezists

a solution u € W#m‘z)‘o(Qf) of the problem (1)—(3) in cylinder @, provided that the
inequalities

2m,1) I e Dl Lo
A < K, gy limmimbemome) ¢

hold.
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